
The Lester and Sally Entin Faculty of Humanities

School of Philosophy, Linguistics and Science Studies

The Program of Cognitive Studies of Language and Its Uses

Learning morpho-phonology using the

Minimum Description Length Principle

and a Genetic Algorithm

MA thesis submitted by

Nur Lan

Thesis advisor:

Dr. Roni Katzir

May 2018

Abstract

We present an extension to Rasin et al.’s learner of morpho-phonological rules

(2015), that was able to induce SPE-form representations from surface forms in

an unsupervised way, by following the principle of Minimum Description Length

(MDL) as an evaluation metric to select between possible grammars.

The original learner was hindered by computational limitations that restricted

its application to limited corpora, both in size and resemblance to natural lan-

guage. A genetic algorithm implementation is presented, replacing the previous

learner’s search procedure and allowing to speed up the search significantly. The

improvement in performance allows the learner to tackle more complex corpora,

resembling natural language.

The extended learner is presented with a corpus modeled after French opaque

optional rule interaction, which was given by Dell (1981) as an example of a non-

trivial learning challenge for the child learner. The learner is able to induce the

underlying morphological and phonological representations of the French corpus.

2

Acknowledgments

I am, above all, grateful to my advisor Roni Katzir, whose guidance and insights,

his breadth and depth of knowledge, have allowed this work, and the learning pro-

cess that preceded it, to happen. This thesis is the outcome of a research held by

Roni, in which I have been fortunate to take part. I could not have wished for a bet-

ter path in my studies, which started in Roni’s illuminating seminar about learning

and culminated in fascinating research, to which I am proud to have contributed.

I am also thankful for having met Roni’s team, and especially Ezer Rasin, who

has shared his immense knowledge with endless patience, kindness and clarity,

during many hours of work that have enriched me academically, professionally

and personally.

Without Iddo Berger, who wrote the learner’s code and implemented its algo-

rithms, this project would not have happened. Luckily for me it is one of the most

elegant and clean pieces of code I have seen. It is thanks to Iddo’s limitless talent,

guidance and generosity that I was able to contribute to this project.

I would also like to thank my teachers in the cognitive aspects of language

program, in the Sagol school of neuroscience and in the linguistics department at

4

5

Tel Aviv University: Orna Peleg, Yair Lakretz, Outi Bat-El, and Irena Botwinik. I

also thank my friends and fellow students Aviaz Rand, Dror Chawin, and Victoria

Costa.

Finally I would like to thank my family and friends, and my love Adi Chawin

for bearing my endless staring at dark screens filled with simulation logs. I would

especially like to thank my cat friend Puti (Ruti) for her endless love and purrs.

Contents

1 MDL Learning 9

1.1 Introduction . 9

1.1.1 The MDL criterion . 14

1.2 Learning morpho-phonology . 15

1.2.1 Hypothesis representation 15

1.2.1.1 Phonological rules 16

1.2.1.2 Lexicon . 18

1.2.1.3 Data given the grammar 19

1.2.2 Search . 21

2 Genetic Algorithm 25

2.1 Background . 25

2.2 Basic Genetic Algorithm . 26

2.3 Application . 30

2.4 Morphophonology learning . 31

2.4.1 Population initialization 32

6

CONTENTS 7

2.4.1.1 Random lexicon 33

2.4.1.2 Random rules 33

2.4.2 Mutation . 34

2.4.3 Crossover . 34

2.4.4 Lexicon Crossover . 34

2.4.4.1 Transition matrix crossover 35

2.4.4.2 Connected components crossover 37

2.4.4.3 Subgraph crossover 39

2.4.4.4 Unilateral emissions crossover 41

2.4.5 Rule Crossover . 42

2.4.5.1 Rule pair crossover 42

2.4.5.2 Unilateral rule crossover 43

2.4.6 Selection . 44

2.4.6.1 Rank-based selection 44

2.4.6.2 Tournament selection 46

2.4.7 Fitness . 47

2.4.8 Elitism . 49

2.4.9 Parallelization . 49

2.4.9.1 Naive parallelization 50

2.4.9.2 Island model 51

2.4.10 Technical information 56

2.4.11 Performance . 56

2.4.12 Hyperparameters comparison 57

CONTENTS 8

2.4.12.1 Crossover and mutation rates 57

2.4.12.2 Island population size 60

2.4.12.3 Elite size . 60

2.4.12.4 Crossover operators 63

2.4.12.5 Selection methods 63

3 French rule interaction 65

3.1 Background . 65

3.1.1 Rule interaction . 67

3.2 Simulation . 70

3.2.1 Results . 71

4 Discussion 75

A Mutations list 77

A.1 Mutations on HMM . 77

A.2 Mutations on feature bundle list 79

A.3 Mutations on rule set . 79

B French simulation data 81

Chapter 1

MDL Learning

1.1 Introduction

Facing a complex reality, the cognitive system copes surprisingly well with the

vast amounts of data it perceives. One long-lasting explanation for how humans

learn under these conditions claims that the cognitive system inherently strives for

simplicity. That is, that whenever two competing hypotheses try to explain certain

perceived phenomena, the cognitive system would prefer the simplest.

Over the years, the claim for a simplicity criterion has had numerous incar-

nations in various fields. It can be traced back to ‘Occam’s Razor’, a principle

attributed to 14th century’s William of Occam which states that entities should not

be multiplied beyond necessity. This is usually interpreted like so: when compet-

ing theories are compared, and all are consistent with the observed data, the theory

that provides the simplest explanation of the data should be preferred. Jumping

9

CHAPTER 1. MDL LEARNING 10

ahead to the 19th and 20th century, a similar reasoning can be found in the Gestalt

theory, where a simplicity criterion was used to explain perceptual phenomena

- for example, that the visual system automatically completes the outline of oc-

cluded shapes (Chater, 1999).

Several decades later, the elusive idea of simplicity has found a quantifiable in-

terpretation in the form of Kolmogorov Complexity, a mathematical and information-

theory incarnation of Occam’s Razor. Building upon the pioneering work by

Solomonoff (1964) and developed independently by Kolmogorov (1965) and Chaitin

(1966), Kolmogorov complexity parallels simplicity with the tangible definition

of description length. Instead of isomorphically identifying an object with its con-

tent, Kolmogorov complexity considers the object’s description length - or more

precisely, the length of a Turing machine or equivalent program that prints the

object and halts - as a measure of its simplicity.

For example, say we are given two infinite sequences of 1’s and 0’s, and are

asked to decide which one is ‘simpler’:

0101010101010101010101010101010101... (1.1)

0011101000110101110000010101110101... (1.2)

(1.1) would be universally selected as the simpler sequence. But why? Using

Kolmogorov complexity we can quantify this intuition: (1.1) can be described

in a much more compact way than (1.2). Say we choose our description to be

CHAPTER 1. MDL LEARNING 11

nondeterministic finite automata (NFA), all we need is this simple representation:

Figure 1.1: NFA generating string (1.1)

However, in order to describe (1.2), we would need an automaton of at least

the length of (1.2) itself. This is because (1.2) contains no regularities that can be

used to describe it in a way that would be more concise than its surface form. This

notion can also be used to define another elusive idea: randomness; an object may

be considered random if no regularities can be found to compress it.

Using the notion of description length, we can see how a quest for simplicity,

now a quantifiable term, can yield learning: in order to find the simplest explana-

tion of an object - that is, perceived data or phenomena - we look for its shortest

description, e.g., the shortest program that will produce it. In order to do that, we

need to find regularities in the object, which will help us compress it.

Using these terms, learning can be seen as finding regularities in an object and

compressing it in order to minimize its description. Applying the learned program

can be seen as generalizing beyond the data. In our example, the regularity ”0 and

1 repeated forever” was learned and used to compress the sequence to a shorter

program. Re-running the program, to produce a continuation of the string, can be

seen as generalizing beyond the data.

A common risk in learning is that of overgeneralization. Using description

length as a guiding factor for learning helps to overcome this problem: by def-

CHAPTER 1. MDL LEARNING 12

inition, the Kolmogorov complexity of an object is derived from the description

of the object itself, and only it (i.e. the Turing machine that prints that object

and halts). By restricting the description to the object itself, generalization is also

restricted and overgeneralization is prevented. For example, for the binary string

example above, a program or a NFA that generates all possible strings that contain

1’s and 0’s would still describe (1.1) and will also be shorter than the NFA in 1.1;

however, it will not qualify as the minimum description since it generates more

objects than the required one, and overgeneralization is prevented.

Language acquisition is a learning process that has drawn arguments for a sim-

plicity criterion (Chater and Vitányi, 2007). The language learning child acquires

language within a relatively short time (Chomsky, 1965), during which they need

to select between an infinite number of possible grammars that fit the utterances

they face. It is widely assumed that the child is met with mostly positive exam-

ples (Marcus, 1993), which poses an overgeneralizaiton problem - a learner that is

only exposed to positive data might quickly start to overgeneralize; this calls for a

learning mechanism that prevents overgeneralization.

Numerous attempts have been made at applying a simplicity criterion to lan-

guage acquisition. This work extends that of Rasin et al. (2015)1 which deals with

the specific task of learning rule-based morpho-phonology, and that of Rasin and

Katzir (2016) which tries to acquire linguistic knowledge in the same domain but
1The existing rule-based learner by Rasin et al. is referenced throughout this work as Rasin

et al. (2015) for an earlier version that used simulated annealing as its search procedure, described
in section 1.2.2; and as Rasin et al. (2018) for a version which already uses the genetic algorithm
described in this work. Other than that the works are interchangeable.

CHAPTER 1. MDL LEARNING 13

using constraints-based phonology.

Already in Chomsky and Halle’s Sound Pattern of English (SPE; 1968, p.334)

an evaluation metric was given for comparing phonological grammars, based on

what can be interpreted as a simplicity principle: given two competing grammars

G and G
0 that can both generate the data, and |G| < |G0| - G should be preferred.

| · | represents the number of symbols in each grammar.

Similarly to the Kolmogorov example above, it can be seen how using this

economy metric yields generalization. However, it can also be seen that a child

learner using this metric will quickly begin to overgeneralize, since the metric

poses no limit on the minimization of the grammar as long as it describes the data.

Moreover, it does not take into account rule ordering, since is does not provide a

mechanism for discriminating between two hypotheses as long as they have equal

number of symbols, albeit with different rule orderings. These two issues will

become significant in the French example given in Chapter 3.

Since the SPE economy metric is missing a component to balance overgen-

eralization, a natural complementary evaluation metric would allow to restrict

grammars to the data observed. This is taken to the extreme in the subset prin-

ciple (Berwick, 1985; Wexler and Manzini, 1987), which states the following: in

choosing between two competing grammars G and G
0, which describe the data

equally well and generate two sets of licit surface forms L and L
0, and L (L

0 (L

is a strict subset of L0) - prefer G over G0.

With this metric, the problem of overgeneralization is solved: the learner will

always prefer the grammar that is most restrictive with respect to the data. How-

CHAPTER 1. MDL LEARNING 14

ever, it can be seen how this leads to a problem at the other extreme - that of

undergeneralization (‘overfitting’). A learner following the subset principle will

fail to generalize beyond the data, because a generalizing grammar will always

generate a language that is a superset of the language generated by a more re-

stricted grammar, that generates only the data itself.

1.1.1 The MDL criterion

It is thus clear that an evaluation metric that will allow to generalize beyond the

data, while restricting the grammar to the perceived data, is needed in order to

allow proper learning. As seen in the previous sections, Kolmogorov complexity

embodies both these qualities.

While Kolmogorov complexity is not computable (Li and Vitányi, 2008), it

might still be computable for specific problem encodings that limit the hypothesis

space. We will use an approximation to Kolmogorov complexity, the Minimum

Description Length principle (MDL; Rissanen, 1978). For our context of evaluat-

ing competing grammars, the principle postulates the following; when choosing

between grammars, given the observed data D , choose the grammar G that min-

imizes the sum:

|G|+ |D:G| (1.3)

CHAPTER 1. MDL LEARNING 15

In the context of our learner of morpho-phonology grammars, the two sum-

mands in (1.3) have the following meaning:

0110100100100000011011000110| {z }
Lexicon

10101010010| {z }
Rules| {z }

G

011000010110010001101001| {z }
D:G

• |G| - the number of bits used to encode the grammar G, which consists of a

lexicon and a rule set.

• |D:G| - the number of bits used to encode the data D given that G was

internalized.

By minimizing the two factors in (1.3), the learner balances between an over-

restrictive grammar and an over-generalizing one. This allows to generalize while

avoiding overgeneralization, and to encode exceptions without overfitting the data.

If G gets too general, |G| will become smaller, while |D:G| will grow in order

to encode exceptions. Inversely, if the grammar memorizes the data instead of

generalizing, |D:G| will diminish because all exceptions will be encoded in G,

but |G| will grow significantly.

1.2 Learning morpho-phonology

1.2.1 Hypothesis representation

In order to apply the MDL principle to learning rule based morpho-phonology,

it is needed to measure the encoding length of the hypotheses that make up the

CHAPTER 1. MDL LEARNING 16

learner’s hypothesis space. For this it is needed to work out the representation

and encoding scheme for morpho-phonological hypotheses. This section explains

the learner’s inner workings and mostly summarizes the work done in Rasin et al.

(2015).

As is customary in phonology, phonetic segments are not represented atom-

ically but as feature bundles. The segments and features are aligned in a table

like the one in Figure 1.2. For our learner, due to performance limitations and to

facilitate the search, current simulations have specific feature tables that contain

only the necessary segments for the corpus.

cons voice velar cont back

d + + - - -
t + - - - -
g + + + - -
k + - + - -
z + + - + -
s + - - + -
i - + - + -
u - + - + +

Figure 1.2: Example feature table

1.2.1.1 Phonological rules

Rules are represented in standard SPE format, as shown in Figure 1.3. A and B

are feature bundles like the one in Figure 1.4 and may be empty (;). X and Y

are sequences of feature bundles that may also be empty, and constitute the left

and right contexts of the rule application environment. optional is a boolean flag

specifying whether the rule is optional or obligatory.

CHAPTER 1. MDL LEARNING 17

A|{z}
focus

! B|{z}
change

/ X|{z}
left context

Y|{z}
right context

(optional?)

Figure 1.3: Rule format

+cons

�voice

�

Figure 1.4: Example feature bundle

In order to convert rules to binary representation, we can first convert them to

intermediary representation as strings, that will later be converted to bit strings.

Below is an optional liquid-deletion rule, given in (1a) in standard SPE notation

and in (1b) in its intermediary flat string notation. The string contains all the

components of the rule, separated by delimiters (#) that are needed to reconstruct

the original rule from its flattened string and binary forms.

(1) Liquid deletion rule

a. SPE notation

+liquid

�
! ;/

2

64
+cons

�son

3

75 (optional)

b. String notation

+liquid#rc;#rc + cons� son#b#f1#rc

In order to convert the intermediary string to a binary string, a conversion

CHAPTER 1. MDL LEARNING 18

table can be used that converts all available symbols to binary strings. The length

of each symbol is determined by the number of all possible symbols in a rule

(plus the delimiters). For this, a naive binary encoding is used, i.e. if there are n

possible symbols, each binary string will be of length dlog2 ne bits.

A phonological grammar can contain multiple rules, and the order of their

application is significant; each rule is thus converted to its binary string represen-

tation, and the strings are concatenated in order.

1.2.1.2 Lexicon

The learner will jointly learn morphological and phonological representations, so

it is also needed to represent the lexicon of underlying representations (URs).

This is done using Hidden Markov Models (HMMs), whose emissions are used to

store morphemes, and state transitions are used to represent possible morpheme

combinations. An example HMM for the URs /kat/ and /dog/ and the optional

plural suffix /z/ is given in Figure 1.5.

Figure 1.5: Plural English lexicon represented by an HMM

In order to encode the lexicon HMM and to be able to measure its length, the

HMM is serialized into a binary string using a conversion table similar to the one

constructed for the rule set. Each symbol in the final encoding is a binary string of

CHAPTER 1. MDL LEARNING 19

length dlog2 ne bits, where n is the number of elements required to represent an

HMM: all states, segments (that make up emissions), and delimiters that enable

to reconstruct the HMM. Each symbol in this string will be converted to a binary

string, and these will be concatenated into the final binary representation.

1.2.1.3 Data given the grammar

In order to measure the encoding length of the |D:G| term in the MDL sum, it is

needed to compile the lexicon and the rules in a way that will express encoding

choices of the surface forms in D given G. For example, application of obligatory

rules would not incur an encoding length cost since they always apply, whereas

selecting a morpheme among a HMM state’s possible emissions, or application

of optional rules, would incur a cost proportional to the number of choices to be

made along the way.

Generating all the possible outputs of a grammar by brute-force is unfeasible

(e.g. the grammar may generate infinite outputs), hence a more efficient parsing

method is needed. Parsing is thus done by transforming both lexicon and rules

into finite-state transducers (FSTs), and then composing them onto one another to

receive the final grammar FST. The compilation of SPE rewrite rules into FSTs

is done using the method described in Kaplan and Kay (1994) and was imple-

mented for the learner in Rasin et al. (2015). The lexicon HMM is transformed

into a FST by flattening the HMM’s state transitions and emissions into a NFA

(later converted to FST), in which state transitions become epsilon transitions and

emissions are written on the FST’s input and output arcs.

CHAPTER 1. MDL LEARNING 20

The outputs of the final grammar FST represent all surface forms generated

by the grammar (a grammar may generate more or less outputs than the correct

grammar). In order to calculate |D:G| for a single surface form, the FST is parsed

for all possible derivations of it, and the encoding length is set to the number of

bits required to encode each choice. A naive binary encoding is used, in which

a selection between n possibilities has a uniform probability and costs dlog2 ne

bits2.

Figure 1.6: FST for a grammar with a liquid deletion rule and a lexicon containing /tabl/, /arbr/
and /parl/.

An example FST for a grammar consisting of the liquid-deletion rule (1a)

and a lexicon with three underlying forms /tabl/, /arbr/, and /parl/ is given in

Figure 1.6.

Let us follow a sample calculation of the encoding length of the surface form

[tab] - the result of optionally deleting the liquid at the end of /tabl/. First, the
2The use of a uniform, non-entropy encoding is done for the sake of simplicity and explain-

ability of the model. It is however a wasteful encoding scheme, e.g. if a choice is made among 9
possibilities, it would be encoded using 4 bits, and 7 binary strings will be left unused. This makes
the model highly sensitive to variations in the grammar transducer, where a single extra state that
happens to push the number of choices beyond a power of 2 can cause the final encoding length
to grow significantly. This behavior may introduce unwanted artifacts to the final grammar, see
discussion in Chapter 3 and in Rasin et al. (2018).

CHAPTER 1. MDL LEARNING 21

transition from q0 to q1 is deterministic and costs 0 bits. Then, any outgoing

transition from q1 costs dlog2 3e = 2 bits, representing the selection of one of

the three possible morphemes. We take the transition to q3 representing /tabl/.

The next non-deterministic choice is specifying the transition from q9 to either

q12 or q11, which represents specifying whether /l/ should be deleted and costs

dlog2 2e = 1 bit. The next transition to the final accepting state is deterministic

and costs 0 bits. The final encoding length for [tab] is thus 3 bits. This process

is repeated for each surface form in the corpus and summed to form |D:G|. It

can also be seen that for /parl/ the encoding length would be only 1 bit for the

morpheme selection, since the deletion rule does not apply in the environment.

1.2.2 Search

The encoding scheme described above makes it possible to assign a description

length |G| + |D:G| to a hypothesis which consists of a lexicon and rule set. The

goal of the learner is to find the hypothesis with the minimal description length,

and for this a search procedure is needed. Since the hypothesis space is infinite,

brute-force search for the optimal hypothesis is infeasible. Moreover, since the

hypotheses that the learner is manipulating are discrete objects which don’t con-

vert to continuous representations, and because the MDL target function is not

differentiable, the task is irrelevant to gradient-based optimizers.

Simulated Annealing (SA; Kirkpatrick et al., 1983) was used in Rasin et al.

(2015) as the optimization method for the learner. SA is inspired by a physical

technique of slowly cooling down a heated metal, with short periodic heating

CHAPTER 1. MDL LEARNING 22

phases, in order to minimize the energy of the material.

One of the advantages of SA is that it can operate on discrete objects like

the learner’s hypotheses, and that it is designed to reach a global optimum in

complicated hypothesis spaces. Similarly to its physical inspiration, SA has two

main configurable hyperparameters: an initial temperature, and a constant fraction

called the cooling rate. The algorithm starts with some initial hypothesis that

will be described below. At each step of the algorithm’s run, the temperature

T is lowered by multiplying it with the cooling rate. The algorithm ends when

T reaches a bottom configurable threshold. Inspired by the equivalent physical

process, the target function that assign scores to hypotheses is called the energy

function, E. For MDL learning the energy function value is |G| + |D:G|, and

since we’re minimizing, lower energy is better.

At each step of the algorithm, the hypothesis from the previous step undergoes

a mutation that generates a ‘neighbor’ hypothesis by changing either the rule set

or the lexicon. The full list of mutations is given in Appendix A. If the neighbor

has a better energy, it is always switched to. If not, the algorithm stochastically

chooses to switch according to a probability that is dependent on the number of

steps it has completed so far (expressed through T) and the difference in energy

between the two hypotheses. The probability of switching is given in (1.4).

Pswitch = e

�(Eneighbor�Ecurrent)

T (1.4)

In the beginning of the algorithm, when the temperature is relatively high, the

CHAPTER 1. MDL LEARNING 23

decision will be less greedy and the search will tend to make large leaps across the

search space by switching hypotheses, even for worse. As the search progresses

and temperature is lowered, the algorithm will become more greedy and will pre-

fer local improvements of the current hypothesis, that will hopefully lead it to the

global optimum. The hypothesis at the algorithm’s final step is declared as the

optimal one found.

For MDL learning, the initial hypothesis was set to a naive grammar that con-

tains no phonological rules and a lexicon that generates ⌃⇤. This hypothesis is far

from the MDL-optimum since it overgeneralizes and incurs an expensive |D:G|.

Another implementation choice made for MDL learning was to only assign en-

ergy values to valid hypotheses, i.e. if mutation yields a hypothesis that fails to

represent the data, it is never switched to.

While SA has worked well in Rasin et al. (2015) and successfully found the

optimal hypotheses for some datasets, its main disadvantage lies in its very long

run time: even for small corpora that consisted of 32 surface forms, simulation

run times were in the days and even weeks3. First, this is because long run times

are an inherent part of the algorithm - the slower the cooling rate is, the better the

chances are of finding an optimal solution. Secondly, SA is a sequential algorithm

that manipulates only one hypothesis at a time, and so even strong multiprocessor

machines cannot be used to improve its performance (attempts at parallelization

are discussed in Section 2.4.9). In order to support larger corpora with more com-

plex phonological phenomena that resemble natural language, the search proce-
3These simulations were run on Intel Xeon 3.30GHz machines with 16GB RAM.

CHAPTER 1. MDL LEARNING 24

dure needed to improved.

The next chapter will present an alternative search procedure for the learner,

replacing simulated annealing with a genetic algorithm that improves performance

significantly and enables testing the learner on larger and more realistic corpora.

Chapter 2

Genetic Algorithm

2.1 Background

Since the early days of the computer age and artificial intelligence research, re-

searchers have been using the growing knowledge about natural biological sys-

tems in order to model them computationally, to better understand these systems

and to utilize them in novel ways.

In the field of neuroanatomy, for example, discoveries that spanned over cen-

turies about how neurons are structured and how they operate have led to the

development of models known today as artificial neural networks - a mathemat-

ical abstraction of complex cerebral structures. Later on, revelations about the

visual system led to development of more advanced neural networks that mimic

the working principles of the visual cortex. Similarly, the theory of Darwinian bi-

ological evolution has inspired researchers to try and model its mechanism. This

25

CHAPTER 2. GENETIC ALGORITHM 26

has led to a domain known today as Evolutionary Computing, which includes

a wide range of algorithms and methods inspired by evolutionary principles, of

which genetic algorithms (GAs) are the most commonly used.

Genetic algorithms were developed by John Holland in the 1960s, first as

a straightforward approach to model and understand evolutionary phenomena,

and then in Holland (1975) as an optimization method for computational prob-

lems (Mitchell, 1998a). Genetic algorithms arise from the notion that natural

evolution can be thought of as an ‘optimization’ of a species, which is improved

ad infinitum by the basic mechanisms of evolution: natural selection, mating, and

mutation. Genetic algorithms abstract these mechanisms, and use them to help

solve computational problems. Typically these problems will have no known ana-

lytical solution, and their set of possible solutions will be too vast to traverse using

brute-force search.

2.2 Basic Genetic Algorithm

The canonical genetic algorithm represents each possible solution to the problem

in a binary encoding, as a string of bits. Each such string is called a chromosome,

a bit in the string/chromosome is called a gene, and each of its possible values (0

or 1) is called an allele. The terms are naturally borrowed from biology although

they have more abstract roles in the algorithm. The basic genetic algorithm is

presented in Algorithm 1.

When the algorithm is first started, an initial set of chromosomes are gener-

CHAPTER 2. GENETIC ALGORITHM 27

Algorithm 1 Basic Genetic Algorithm
1: F fitness function
2: S selection function
3: X crossover operator
4: M mutation operator
5: N population size
6: px crossover rate
7: pm mutation rate

8: initialize population P with N random hypotheses
9: evaluate fitness for each hi 2 P using F

10: generation 0
11: while generation < max-generations do:
12: for each pair hi, hi+1 2 P , apply crossover X with probability px to pro-

duce two offspring, h0
i, h

0
i+1

13: hi, hi+1 h
0
i, h

0
i+1

14: for each hi 2 P apply mutation M with probability pm to produce h
0
i

15: hi h
0
i

16: evaluate fitness for each hi 2 P using F

17: P S(P)
18: generation generation+ 1
19: end while

20: return argmaxh2PF (h)

CHAPTER 2. GENETIC ALGORITHM 28

ated randomly. This is called the population, and each member of it considered

an individual. Each chromosome is assigned a fitness score, which represents

its quality in the context of the problem being solved. For maximization prob-

lems, a larger fitness score is better, and vice versa for minimization. Throughout

the algorithm’s run, the population undergoes three basic processes inspired by

biological evolution: crossover, mutation, and selection. Each step of crossover-

mutation-selection is called a generation, and the algorithm is stopped after a

predefined number of generations, or when the population reaches a predefined

stopping criterion. The fittest chromosome in the population is then taken as the

optimal solution.

Crossover, sometimes called mating, consists of selecting pairs of individuals

from the population and combining them to produce two new offspring. This

combination needs to be implemented in a meaningful way so that each offspring

will inherit useful characteristics from its parents. Thus, two well-performing

parents will hopefully reproduce to create offspring who will inherit their parents’

features. A configurable probability called the crossover rate is used to choose

whether a pair of parents undergo crossover.

The mutation operator is then applied to each offspring, according to a prob-

ability called the mutation rate. Inspired by genetic mutation that occurs in bio-

logical organisms due to environmental factors, the mutation operator randomly

changes one or more genes in the chromosome. In the basic binary-representation

genetic algorithm, a mutation consists of flipping one or more bits of the chromo-

some. Similarly to in nature, more often than not a random mutation will harm an

CHAPTER 2. GENETIC ALGORITHM 29

individual’s fitness. Every once in a while, though, a mutation may prove advan-

tageous and equip the individual with a feature that will increase its fitness.

The selection phase, inspired by natural selection (”survival of the fittest”), is

then applied to select the individuals that will survive onto the next generation.

The selection operator assigns a survival probability to an individual, usually as

an increasing function of its fitness combined with a random chance of survival.

The degree to which the selection operator favors better-performing individuals is

called the selection pressure. A high selection pressure will push the algorithm

towards a more greedy behavior, in which it might ignore individuals that could

have developed into good solutions, and increases the chances of getting stuck in

a local optimum. A selection pressure too low, on the other hand, might slow the

algorithm down to the level of random search.

Another important effect of selection pressure lies in its interaction with the

mutation operator: the advantage gained by features acquired through mutation

may not be immediately visible; a chromosome may need to carry an allele reached

through mutation for several generations until it can be used. The selection pres-

sure thus needs to be lenient enough so as to allow less-performing genes to re-

main dormant for a while1.
1For example, Tattersall (2012) notes how homo-sapiens may have acquired genetic and cog-

nitive traits many generations before they turned out useful, for uses like erect walk, toolmaking,
symbolism and language.

CHAPTER 2. GENETIC ALGORITHM 30

2.3 Application

A successful optimization method is often said to balance between two princi-

ples: exploration and exploitation. Exploration describes the global search that is

needed in order to scan a satisfactory portion of the solution space. Exploitation

describes the local search that occurs when the algorithm opts for a good enough

solution, and tries to improve on it. Genetic algorithms satisfy both requirements:

the genetic crossover operator can be seen as exploitation of good characteris-

tics found in parents and distilled onto their offspring; and the mutation operator

can be seen as exploration, using randomness to tread into unknown areas of the

solution space. Good exploratory power is essential when dealing with infinite

hypothesis spaces, like our learner’s.

Another advantage of genetic algorithms is that they do not require the prob-

lem’s solution space to be reduced to a continuous representation, i.e. a numerical

vector. The basic genetic operators - crossover and mutation - can be implemented

to apply to symbolic representations, as we will see in the upcoming sections. This

means that genetic algorithms can operate on discrete symbolic objects, while

other models and optimization methods - like neural networks and other gradi-

ent descent optimizers - require the problem to be put in numerical terms; they

also require the target function to be differentiable, while MDL isn’t. This makes

genetic algorithms a good candidate for traversing a solution space like the one

faced by our learner, that is comprised of discrete lexicons and rules.

Yet another advantage of genetic algorithms is their intrinsic parallelizability.

CHAPTER 2. GENETIC ALGORITHM 31

In each step of the algorithm, the three basic genetic operators - crossover, muta-

tion, and fitness calculation - are applied to each individual in the population (or

to pairs of chromosomes, in the case of crossover). Since each application is inde-

pendent of the others’ results, this process can be easily parallelized, resulting in

a potential speedup linear in the number of parallel processes. These advantages

make genetic algorithms a good candidate for our learner’s search procedure.

At the same time, it should be noted that the search algorithm is chosen here

solely for its performance and ability to optimize the MDL metric for morpho-

phonological hypotheses as they are formalized in this work. We assume nothing

about the way the child learner’s brain actually performs the search, of which we

still know very little.

2.4 Morphophonology learning

The following genetic algorithm implementation replaces the simulated annealing

optimization described in Section 1.2.2 as the search method for the learner, in

order to improve its performance.

The representation of hypotheses is kept the same, using HMMs to represent

lexicons, and sets of SPE rules. Working in the context of SPE rules and morpho-

logical lexicons, the basic genetic operators needed to be implemented in a way

that will be expressive yet meaningful enough so as to allow the algorithm to learn

effectively.

Another important aspect to bear in mind for this implementation is that the

CHAPTER 2. GENETIC ALGORITHM 32

search method plays a different role for our learner than it usually does in opti-

mization challenges. Our goal was to demonstrate how MDL - or more broadly,

simplicity - can operate as an evaluation metric for the child learner. This puts our

learner in a different context than other problem-solving tasks: unlike machine

learning tasks in an engineering context, that aim to find the best solution quickly

and may use as much supervision as possible - our learner’s goal is to find an opti-

mal solution while being as unsupervised and agnostic about the search landscape

as possible; this, in order to demonstrate how simplicity can act as a guiding fac-

tor alone. Problem-specific tweaks and tricks, like limiting the learner to specific

mutations that we know are useful, could have been put in place to help guide the

search towards the wanted solution. Instead, the learner is willingly left with an

agnostic (yet expressive) toolbox, and is able to induce correct hypotheses.

Sections 2.4.1-2.4.10 describe the implementation in detail. Section 2.4.9 de-

scribes parallelization techniques for increased performance. Section 2.4.11 dis-

cusses the increase in performance. Section 2.4.12 presents an empirical compar-

ison of different parameters of the algorithm.

2.4.1 Population initialization

Upon simulation start, a random population of size N is generated randomly. As

with the earlier simulated annealing-based learner, each hypothesis in the popula-

tion consists of a HMM representing the lexicon, and a rules set.

CHAPTER 2. GENETIC ALGORITHM 33

Figure 2.1: Random HMM example

2.4.1.1 Random lexicon

A random HMM representing the lexicon is created by generating a chain of

states, with a random number of states leading from the initial state q0 to the

final state qf . Each state is assigned random emissions, using the table of avail-

able segments. The maximum number of emissions per state and their maximum

length are configurable parameters of the simulation. An example random HMM

is given in Figure 2.1.

2.4.1.2 Random rules

A random number of rules are generated, each one with a random feature bundle

for each of the target, change and context positions. In case of simulations with

word or morpheme boundary enabled, these flags are also randomized (with true/-

false values). The maximum number of rules in a set and the maximum number of

features per position are configurable parameters of the simulation. An example

random rules set is given in Figure 2.2.

CHAPTER 2. GENETIC ALGORITHM 34

R1 : [+cons]! [+coronal]/ [+voice] (optional)

R2 : [+liquid]! ;/[+coronal] [+coronal,+strident] (obligatory)

Figure 2.2: Random rule set example

2.4.2 Mutation

An individual may undergo mutation by using the existing mutation operators

used by the simulated annealing learner in Rasin et al. (2015). The full list of

mutations is given in Appendix A. Each individual undergoes mutation with prob-

ability Pm, called the mutation rate. One of the hypothesis’ components - lexicon

or rules set - is selected with uniform probability (0.5), and a random mutation is

applied to the selected component.

2.4.3 Crossover

Two hypotheses are mated by applying crossover either to their lexicons or their

rule sets. The crossed-over component is selected at random with uniform proba-

bility.

2.4.4 Lexicon Crossover

The crossover operator for HMMs needed to be implemented in a meaningful

way so that it will result in inheritance of valuable traits. The fact that HMMs

are made of two layers of information - transitions and emissions - makes it im-

portant to develop a crossover operator that will capture both. Furthermore, the

CHAPTER 2. GENETIC ALGORITHM 35

implementation needs to protect the innovations learned in structure from being

destroyed during crossover.

The implementations described below are inspired by two categories of previ-

ous works: those designed specifically for HMMs and others designed for mech-

anisms resembling HMMs, mainly graphs.

Relatively little work has been done trying to evolve HMMs directly using

genetic algorithms. Yada et al. (1994), Won et al. (2004), Won et al. (2006),

and Won et al. (2007) have used genetic algorithms for learning HMM topologies

for DNA sequence analysis, using a graph representation similar to the one in

section 2.4.4.2 below. Chau et al. (1997) used a transition matrix representation

similar to the one described in section 2.4.4.1 below.

Since HMMs can be seen as a specific case of a directed graph, we also looked

at implementations for evolving graphs. In this domain a large body of work

has been done to evolve efficient neural networks topologies, which are repre-

sented as directed weighted graphs. Stanley and Miikkulainen (2002) offers a

good overview of graph representations for evolving neural networks, mention-

ing crossover should implement some form of subgraph switching to preserve

meaningful components of the graph. Variations of subgraph crossover are imple-

mented in 2.4.4.2 and 2.4.4.3.

2.4.4.1 Transition matrix crossover

Each parent HMM is first transformed to a transition matrix. Row i in the matrix

represents the transitions of state i in the HMM, so that entry Ai,j is 1 if there

CHAPTER 2. GENETIC ALGORITHM 36

Figure 2.3: Transition matrix HMM crossover. (a) The transitions of each parent HMMs are
represented as transition matrices. (b) Rows 0 and 2 are selected at random for crossover. (c)
New transition matrices are created by switching the selected rows. (d) The offspring HMMs are
constructed from the new transition matrices.

CHAPTER 2. GENETIC ALGORITHM 37

is a transition in parent HMM A from state i to state j. During crossover, the

values from row i in each matrix may be copied to the other matrix’s row i and

vice versa, with uniform probability (0.5). If one matrix is larger than the other,

rows can be removed from the larger one and added to the other. Each row moves

with its respective state’s emissions. The offspring HMMs are then re-constructed

from the result transition matrices and emission lists.

This implementation is in the spirit of the canonical binary-representation

crossover, in that it flattens the HMM structure to binary matrices that are sim-

ilar to flat bit-strings, in hope that the offspring will be better than their parents.

This may often prove destructive to the HMM, since it ignores its overall struc-

ture which may bear more meaning than a single state does. For example, at an

intermediary stage of the learning process, a HMM which is not yet optimal of-

ten contains a loop of transitions, which concatenates segments into correct mor-

phemes. This is not an optimal state because it is wasteful in terms of D:G, but

it still leads to hypotheses that can fully represent the corpus. Since the rows are

switched randomly during this crossover implementation, the loop may be broken,

the HMM will fail to generate some morphemes and the hypothesis will become

invalid. The following implementations try to cross-over the HMM while better

keeping its structure.

2.4.4.2 Connected components crossover

Each parent HMM is represented as a directed graph, and its connected compo-

nents are found using a variant of the canonical algorithm for finding connected

CHAPTER 2. GENETIC ALGORITHM 38

Figure 2.4: Connected component HMM crossover. (a) A connected component is selected from
each parent. (b) Each offspring contains the switched over component from the other parent. Note
how loops are preserved.

CHAPTER 2. GENETIC ALGORITHM 39

components, described in Pearce (2005). Two components are randomly chosen

from each HMM, and switch places. One incoming arc and one outgoing arc from

each component are kept, and are re-attached to the new inserted component. The

emissions of each crossed-over state move with their respective states and stay in-

tact. The motivation for this crossover operator is that it switches between groups

of consecutive states instead of randomly selected ones; since the learner often

needs to learn such consecutive transitions, e.g. stems and suffixes, this operator

may help preserve these structures. At the same time it prevents loops from being

broken, which may also preserve valid hypotheses.

2.4.4.3 Subgraph crossover

Subgraph crossover is based on the crossover operator used in Genetic Program-

ming (GP), a family of evolutionary algorithms that operate similarly to genetic

algorithms but are aimed at evolving programs. Programs are often represented

as tree graphs, in which each node contains a functional operator (e.g. ”plus”,

”minus”). A tree thus makes up a program whose order of operations is set by

the tree flow. The common crossover operator on GP trees consists of selecting

a branch in each parent tree, cutting the sub-trees stemming from the selected

branches, and hanging each sub-tree back at the other parent’s cut branch. This

implementation respects the learned functionality of the tree and has the potential

of importing functionality from both parents to create superior offspring.

In our implementation for HMMs, an arc in each parent HMM is randomly

chosen. The HMM is cut at the chosen arc, and the subgraph stemming from it is

CHAPTER 2. GENETIC ALGORITHM 40

Figure 2.5: Subgraph crossover. (a) A transition arc in each parent is selected as a cutoff point -
for the upper parent the arc from q2 to q3 and for the lower parent from q1 to q2. (b) The offspring
are constructed by crossing over the parent graphs from above and below the cutoff points

CHAPTER 2. GENETIC ALGORITHM 41

Figure 2.6: Unilateral emissions crossover. Emissions are randomly chosen from one parent and
added to the equivalent states in the other parent. No emissions are deleted from either parent.

switched with the subgraph from the other parent. Since a HMM is not necessar-

ily a tree (it may contain cycles), only arcs that serve as incoming/outgoing arcs

of a connected component are selected as cutoff places. The emissions of each

crossed-over state move with their respective states.

2.4.4.4 Unilateral emissions crossover

The HMM crossover implementations described above might turn out destruc-

tive for the learned grammar. First, because the segmentation and emissions are

highly co-dependent, switching only parts of them may render the HMM useless.

Second, the learned segmentation may be idiosyncratic to the specific grammar,

where it interacts with the rule set. Crossing-over both the emissions and the

CHAPTER 2. GENETIC ALGORITHM 42

segmentation might prove destructive more often than not.

It may therefore be valuable to only cross-over the emissions learned in one

parent to the other, hoping that the accepting parent, who had hopefully already

learned a somewhat-correct segmentation, would benefit from morphemes it still

hasn’t discovered. No emissions are removed from either parent and the states

transitions stay intact.

This crossover implementation leaves the evolution of HMM topology to the

mutation operator alone. A non-destructive crossover that evolves both segmen-

tation and emissions of the HMM may be though of for future development.

2.4.5 Rule Crossover

Like for lexicons, crossover for rules needed to be implemented in a way that will

preserve useful rules learned throughout the evolution process. At first, a naive

crossover was implemented that was allowed to cross-over rule internal parts, i.e.

feature bundles. This proved more destructive since rules bear meaning as one

unit containing change and context, and lose this meaning when these parts are

separated or switched. The implementation was then changed to two operators

that manipulate whole rules instead of parts of them.

2.4.5.1 Rule pair crossover

The two rule sets from both parents are aligned so that each rule is paired with the

rule at the same position in the other parent. The rules in each pair then switch

places with uniform probability (0.5). If one set has more rules than the other, the

CHAPTER 2. GENETIC ALGORITHM 43

Figure 2.7: Rule pair crossover. Rules R1 and R3 are selected from each parent for crossover.
Since the right parent has only two rules, it only receives R3 from the other parent.

Figure 2.8: Unilateral rule crossover. Rule R1 is randomly chosen from the right parent and added
to the left parent at the same position, without removing any rules.

smaller one can receive rules from the larger. The overall number of rules stays

the same.

2.4.5.2 Unilateral rule crossover

Following the same logic for unilateral HMM crossover, this operator adds rules

from one set to the other, without removing any rules from either set. This assumes

that removing rules from grammars might render them invalid; instead, it may be

better to add rules that could prove useful, and let redundant rules be removed by

mutation later.

CHAPTER 2. GENETIC ALGORITHM 44

2.4.6 Selection

A selection method’s role is to receive the current population as input, and to out-

put individuals that will make the population of the next generation. The function

may output some individuals more than once, i.e. selection with repetition, which

essentially means ‘killing’ under-performing individuals and favoring fitter ones.

Many selection methods have been proposed in the genetic algorithms liter-

ature. We implement two of the most common ones, rank-based selection and

tournament selection, which offer a good balance between population diversity

and selection pressure.

2.4.6.1 Rank-based selection

Rank-based selection is a variant of fitness-proportionate roulette-wheel selection

(Goldberg, 1989), a method that assigns a selection probability to an individual

based on its fitness value. For a population of size N , an imaginary roulette wheel

is divided into N slices, each relative in size to each individual’s fitness divided

by the average fitness. The wheel is then ”spun” N times, and each spin selects an

individual for the next generation (with repetition). Since individuals are selected

based on their fitness, better-performing individuals will get chosen more often,

while worse ones will have less chance of survival.

Fitness-proportionate selection might create an unwanted selection bias in sit-

uations where a few individuals have superior fitness values compared to the rest

of the population. These individuals will almost always be selected for survival,

CHAPTER 2. GENETIC ALGORITHM 45

and will quickly come to dominate the population, even though they are outnum-

bered. This can result in a decrease in population diversity and in premature con-

vergence, which may prevent reaching the optimal solution.

Rank-based selection (Baker, 1985) mitigates this problem by assigning a se-

lection probability based on an individual’s rank in the population, instead of its

direct fitness value. This leaves the selection function monotonically increasing,

but relaxes the selection pressure by allowing less-performing individuals to sur-

vive, thus maintaining population diversity.

The best individual’s rank is N , and the worst rank is 1. The individuals are

first sorted by fitness values, and each individual is given a slice of the roulette

wheel with size proportionate to its rank. The selection process then follows the

same method as in roulette-wheel selection.

A linear scaling of each individual’s rank is used, and allows to adjust the

selection pressure (Baker, 1985; Razali et al., 2011):

Rank(n) = 2� SP +

✓
2 · (SP � 1) · (n� 1)

(N � 1)

◆
(2.1)

where N is the population size, n is the individual’s absolute rank in the pop-

ulation (from 1 to N), and Rank(n) is the scaled rank of an individual. SP , for

Selection Pressure, is a configurable constant in range [1.1, 2.0] that can be used

to adjust the variability in scaled ranks. Higher SP will result in selection closer

to fitness-proportionate selection, while SP = 1.1 will result in almost random

selection.

CHAPTER 2. GENETIC ALGORITHM 46

2.4.6.2 Tournament selection

Rank-based selection may impose a heavy computational cost, since it requires the

entire population to be sorted prior to selection. When population size increases,

the sorting phase, executed for each generation with a cost of at least O(NlogN),

can slow down the search significantly.

Tournament selection is a common selection method that lowers the com-

putational complexity by stochastically approximating more exhaustive selection

methods. Like other methods, the tournament method selects N individuals from

the population with replacement. A configurable parameter t is called the tour-

nament size, and N tournaments are held to select N individuals. In each tour-

nament, t individuals are randomly chosen from the original population, and the

fittest of them is passed to the next generation. Tournament selection thus lowers

the selection cost to O(N).

Larger t means higher selective pressure. The case t = 1 is equivalent to

randomly selecting N individuals with replacement. A common choice for tour-

nament size that balances between selective pressure and population diversity is

t = 2. Tournament selection is however still more prone to genetic drift and pre-

mature convergence than rank-based selection, since the lowest-performing indi-

viduals have a low to zero chance of survival. Tournament selection’s origins and

variants are discussed in detail in Goldberg and Deb (1991).

CHAPTER 2. GENETIC ALGORITHM 47

2.4.7 Fitness

The fitness of an individual is set to the hypothesis’ encoding length (number of

bits in |G|+ |D : G|), as described in section 1.2.2. However, while the simulated

annealing learner only considered hypotheses that describe the data in full, the

genetic algorithm also assigns a fitness score to hypotheses that cannot represent

the data.

This is because the simulated annealing learner starts the simulation with a

naive over-generalizing hypothesis that describes the data, and slowly forms it

into a more specific one; the genetic algorithm learner is launched with a large

population of random hypotheses, which most likely don’t represent the data at

all. For genetic algorithms that operate on non-continuous hypotheses spaces,

like our learner, it is common practice to design the fitness function so that even

invalid hypotheses receive a fitness score, usually with a penalty, to help guide the

search towards meaningful hypotheses (Mitchell, 1998b).

A hypothesis that fails to fully represent the corpus is thus assigned a fitness

value according to the following heuristic.

CHAPTER 2. GENETIC ALGORITHM 48

Hypothesis Fitness Calculation

• A valid hypothesis is assigned a fitness value equal to |G|+ |D : G|

• An invalid hypothesis that doesn’t represent all words in the corpus gets a

penalized fitness value equal to:

threshold + (penalty · number of not-represented words)

• penalty is a configurable cost in bits to add for each not-represented word,

e.g. 1,000 bits.

The threshold is set according to the worst hypothesis in the population:

• If the entire population fails to parse all words, the threshold is set to a high

value (e.g. 1,000,000), higher than any reasonable hypothesis energy.

• If a hypothesis exists that can fully represent all words in the corpus, the

threshold is set to the energy of the worst valid hypothesis.

This heuristic will always score invalid hypotheses as worse than valid ones,

but orders them by their potential validity. This helps to quickly guide the search

towards hypotheses that represent the data, when the population has just been ran-

domized and most of the hypotheses don’t represent any data. Its disadvantage is

that it requires the parsing of all words in the corpus, while the SA learner in Rasin

et al. (2015) stopped the process upon the first word that couldn’t be parsed. Hav-

ing to always parse all words slows down the search. An optimized version of this

CHAPTER 2. GENETIC ALGORITHM 49

heuristic, for example applying it only during an initial bootstrapping phase of the

algorithm, can be thought of for future work.

2.4.8 Elitism

Elitism is a simple yet effective mechanism that prevents losing the best individu-

als in a population due to crossover and mutation (De Jong, 1975). A configurable

percentage of the best individuals in each generation are kept for the next gener-

ation, even if they went through mutation or crossover. The effect of elitism is

tested in 2.4.12.

2.4.9 Parallelization

The major disadvantage of the previous learner’s optimization method, simulated

annealing, is that in its canonical form, it is a sequential algorithm that operates

on a single hypothesis at a time, mutating it step by step. This caused simulations

with relatively small corpora, of a few dozen words, to take days or even weeks to

complete.

Attempts at parallelizing simulated annealing it have been made (Greening,

1990; Azencott, 1992; Onbaşoğlu and Özdamar, 2001; Zomaya and Kazman,

2010), and we have implemented two of the most common techniques: the periodically-

interacting scheme, where several simulated annealing chains are run in parallel

and exchange information periodically about the best hypothesis found thus far;

and the multiple-trials scheme, in which a single simulated annealing chain is run,

CHAPTER 2. GENETIC ALGORITHM 50

with each decision step consisting of choosing between p neighbour hypotheses

instead of 1, making use of p parallel processes.

These methods did not prove advantageous for our purposes, since they did not

significantly improve the run time of the algorithm, and no qualitative difference

was observed. As we will also witness with the parallelization of genetic algo-

rithms below, this may have been due mostly to the fact that these parallelization

techniques require sending single hypotheses back-and-forth between processes

for evaluation. The overhead of this operation offsets the advantage which may

have been gained by parallelization.

Unlike simulated annealing, genetic algorithms are intrinsically parallelizable.

Since they can operate on large populations of hypotheses instead of a single hy-

pothesis, in a multiprocess environment they can offer a potential speedup linear

in the number of processes. This made genetic algorithm a good candidate for

replacing the search method.

2.4.9.1 Naive parallelization

Since the three basic operations of the GA - mutation, crossover and fitness evalu-

ation - operate independently on each individual (or pairs thereof), parallelization

can be easily achieved by distributing these operations to multiple parallel pro-

cesses: a simple ‘master-slave’ scheme can be used, in which a ‘master’ process

distributes work to the other p ‘slave’ processes; the slaves perform mutation,

crossover or evaluation on individuals, and the result is sent back to the master.

This technique should potentially result in a speedup linear in p. However,

CHAPTER 2. GENETIC ALGORITHM 51

it incurs an overhead cost of communicating each hypothesis back and forth be-

tween the main process and the workers. In our learner, experiments showed that

this was not worth the parallelization gain, since the computation cost of the ge-

netic operators is offset by the communication cost. Attempts at lowering the

communication costs were made, mainly by sending only the parts of hypothesis

that are relevant for each operator. However, since each of the operators - muta-

tion, crossover, and evaluation - require most parts of the hypothesis to apply, this

did not prove fruitful.

2.4.9.2 Island model

A less trivial parallelization scheme for genetic algorithms is the Island Model

(Gordon and Whitley, 1993; Adamidis, 1994; Cantú-Paz, 1998), sometimes called

a Multiple-Deme model. Inspired by evolutionary speciation and niching - the

theory of how species evolve in separated environments - the model divides the

overall population into islands or demes. Each island is in essence an independent

basic genetic algorithm as described above, which evolves a subpopulation of

the overall population. The islands are run on parallel processes that are mostly

independent of each other, until once in every number of generations a migration

step occurs, in which some individuals from each island are copied to an adjacent

island. The migration is orchestrated by a parent process. After each island has

completed the overall number of generations, the best hypothesis from all islands

is taken as the optimal solution.

The island model offers significant advantages over the basic single-population

CHAPTER 2. GENETIC ALGORITHM 52

Algorithm 2 Island Model Genetic Algorithm
1: I number of islands
2: N single island population size
3: Mi migration interval
4: Mr migration ratio
5: T migration topology function
6: F fitness function

7: for each i 2 [1, I] do in parallel:
8: initialize random hypotheses population Pi of size N

9: generationi 0

10: while generationi < max-generations do:
11: run Algorithm 1 (Basic Genetic Algorithm) for Mi generations
12: send the best Mr ·N hypotheses from island i to island T (i)
13: delete the worst Mr · N hypotheses in island i and replace them with

incoming migrants, if any
14: generationi generationi +Mi

15: end while

16: end for

17: return argmaxh2[Pi
F (h)

CHAPTER 2. GENETIC ALGORITHM 53

genetic algorithm, and over its naive parallelized version. First, the division of the

population into islands allows to overcome the process communication overhead:

the processes rarely communicate, and when they do, only a small fraction of the

population is communicated between processes. This communication cost is sub-

sumed by the overall simulation time, which is spent in parallel almost without

interruption.

Apart from improving the run time performance, it was argued and shown (Whit-

ley et al., 1999) that partitioning the overall population into isolated islands may

also offer a qualitative improvement, by enabling niching to occur: each island

may potentially explore different areas of the search space, while a single-population

algorithm would have converged prematurely on a underdeveloped solution. The

migration steps allow the islands to exchange their specialized innovations, which

will hopefully merge to form the optimal solution. In our context, the isolated

islands may potentially learn different parts of the correct hypothesis, e.g. some

islands may discover parts of the correct lexicon, while others will discover the

correct rules.

The rate with which the migration step occurs is called the migration interval

(Minterval), and the percentage of individuals that migrate is called the migration

ratio (Mratio). Some decisions need to be made when implementing an island

scheme, mainly how individuals are selected for migration, and how to choose the

target island for migrants (the migration topology). The migration interval and

ratio need to be selected with care: a too-frequent migration interval can cause

the overall population to lose diversity too quickly, which would miss the benefit

CHAPTER 2. GENETIC ALGORITHM 54

Figure 2.9: Round-robin migration topology for a single island. The destination island number is
incremented by 1 with each migration step.

of the island model; a too large migration ratio might cause the same effect. On

the other hand, high migration intervals and low migration ratios will prevent the

islands from exchanging useful genetic information. The island model algorithm

is given in Algorithm 2.

We implemented two migration topologies. The first is a naive circular scheme

that always migrates individuals from one island its immediate neighbour, i.e.,

from island I to island I +1, or more exactly to (I +1)mod(total islands). This

strategy is easy to implement, but is very slow in propagating genetic novelties

between populations: a trait discovered in one island will take many generations

to propagate to other islands. It is also prone to bottlenecks that may be caused by

island processes that are slower or have crashed.

We opted for a toplogy (Whitley et al., 1999) that also arranges the islands in

CHAPTER 2. GENETIC ALGORITHM 55

a ring, but performs migration in a round-robin fashion (figure 2.9): on the first

migration step, each island sends its migrants to its immediate neighbour. On the

second migration, the island destination is incremented by 1, and so forth. This

topology allows all islands to exchange migrants with each other, enables genetic

innovation to spread faster between islands, and helps to avoid bottlenecks.

Another implementation decision is how to select outgoing migrants from an

island, and how to incorporate incoming migrants. We adopt the method in Whit-

ley et al. (1999): the most fit Mratio individuals of an island are sent as migrants,

and the worst Mratio are replaced by the incoming migrants.

Another technical decision to be made is whether to perform synchronous

or asynchronous migration, i.e., whether all islands should wait for each other

to complete a specific number of generations before a migration can occur. We

followed the recommendations in Bennett III et al. (1999), mainly: the islands

never wait for each other (asynchronous migration), since some islands may run

slower than others; if incoming migrants are not available at the migration step,

the island continues without incorporating any; and if an island is sent several

groups of immigrants from different islands before its migration step, the most

recent group of migrants is taken. These heuristics help to speed up the search,

since almost no synchronization delays occur and the dependency between islands

is minimized.

CHAPTER 2. GENETIC ALGORITHM 56

2.4.10 Technical information

The genetic algorithm was implemented on top of DEAP (Fortin et al., 2012), a

Python framework that allows quick prototyping and implementation of evolu-

tionary algorithms. Complex simulations with large corpora that require hundreds

of multiple processes are run using Amazon Web Services (AWS) and Microsoft

Azure cloud platforms, which enable distributing a single simulation over multi-

ple machines. Migrations between islands are made through cloud storage (AWS

S3).

2.4.11 Performance

The following table gives an overview of simulation run times of the previous sim-

ulated annealing learner compared with the genetic algorithm learner, on identi-

cal corpora and the same hardware. It can be seen that the new optimization

method yields a significant speedup, lowering simulation times from several days

to hours2. It should also be noted that the improved optimization not only speeded

up the existing simulations, but also allowed to run new simulations with much

more complex corpora - an order of magnitude larger, in fact - that could not have

been tested earlier. Chapter 3 will present such a corpus.
2Note that the completion criteria for the two algorithms are different. Simulated annealing

stops when the temperature reaches the bottom threshold (starting at 75 or 50 in this comparison),
and the genetic algorithm stops after a configured number of generations (10,000 in this compari-
son). The displayed times are for time to completion. Time to convergence is significantly lower
for the genetic algorithm, which also means that the configured number of generations can be
lowered significantly.

CHAPTER 2. GENETIC ALGORITHM 57

Corpus Words Simulated Annealing Genetic Algorithm
Morphology only 32 11 hours 2.5 hours

Voicing assimilation 32 33 hours 11 hours
Two rules interaction 105 168 hours 17 hours
Opaque rule ordering 105 167 hours 6 hours

Figure 2.10: Simulation time to completion

2.4.12 Hyperparameters comparison

Genetic algorithms are notorious for having many hyperparameters to configure,

usually leading to tweaking the model by trial and error. Plus, optimal config-

urations are often task-specific, and there is no one rule of thumb for all genetic

models. Performing a ‘grid search’ to find the optimal parameters is infeasible due

to the large number of configurable parameters of the model. For this reason we

conduct a limited comparison of the effect of prominent parameters of the model,

to test their efficiency and how they affect the learning process.

All of the comparison were run using the smaller voicing assimilation corpus

from Rasin et al. (2015) that contains 32 words, and use the following hyperpa-

rameters unless otherwise noted: 32 islands with population size 200 (total 6,400);

crossover rate 0.2; mutation rate 0.8; tournament selection with tournament size

2; migration ratio 10%; migration interval 50; elite size 5%. All the figures below

show the best fitness from all islands for each generation. Lower fitness is better.

2.4.12.1 Crossover and mutation rates

The crossover operators that were introduced to the learner in this work are still

not expressive enough to evolve hypotheses alone. The model still relies heavily

CHAPTER 2. GENETIC ALGORITHM 58

Figure 2.11: Crossover and mutation rates

CHAPTER 2. GENETIC ALGORITHM 59

Figure 2.12: Island population size

on mutations, mainly in order to evolve the emissions in HMMs and to evolve the

specifics of each rule. This can be seen clearly in figure 2.11: when the mutation

rate decreases, convergence is delayed. When the model relies only on crossover,

the simulation converges prematurely to the wrong hypothesis. However, it can be

seen that some crossover is somewhat better than no crossover: the convergence

without any crossover is delayed, though not by much - all choices lead to roughly

similar convergence rates as long as mutations are allowed.

CHAPTER 2. GENETIC ALGORITHM 60

2.4.12.2 Island population size

The population size should be selected to be large enough to allow population

diversity, but not too large so it won’t slow down the simulation. Figure 2.12

shows how a population size too small (10) fails to preserve the diversity required

to reach the correct hypothesis, and converges on a wrong one (the plot for the

smallest population size oscillates because no elite is kept). It can also be seen

that the largest population size also reaches the correct hypothesis, although being

unnecessarily slow (the visualization doesn’t reflect the slowdown since it plots

against generations and not time).

2.4.12.3 Elite size

As mentioned in 2.4.8, elitism is used to preserve the best individuals of a pop-

ulation from being lost during mutation or crossover steps. It can be seen in fig-

ure 2.13 that without elite protection the fitness plot oscillates, i.e. the best indi-

vidual is periodically lost. This did not prove fatal in this test for the rather simple

voicing assimilation corpus, but crippled the search significantly for more com-

plex corpora that run for many more generations. It should be noted that a large

elite size (50%) has guided the search faster towards convergences in this case,

but may cause premature convergence with more complex corpora that require a

more refined search.

CHAPTER 2. GENETIC ALGORITHM 61

Figure 2.13: Elite size

CHAPTER 2. GENETIC ALGORITHM 62

Figure 2.14: Rules and lexicon crossover operators

CHAPTER 2. GENETIC ALGORITHM 63

2.4.12.4 Crossover operators

For this comparison, both crossover and mutation rates were set to 0.5. Two

crossover implementations of each component were tested: unilateral emissions

crossover and transition-matrix crossover for HMMs; and unilateral crossover and

rule-pairs crossover for rules (figure 2.15). It can be seen that combinations of

unilateral crossover for one component and a bilateral crossover for the other

worked best, and converged on the correct hypothesis. Other combinations of all-

unilateral crossovers or all-bilateral crossovers failed to converge. The combina-

tions that worked best were adopted for future simulations, although we couldn’t

find an explanation for this behavior. We leave its investigation for future work.

2.4.12.5 Selection methods

Rank-based selection and tournament selection were tested against each other with

different parameters. As mentioned in section 2.4.6, tournament selection with

tournament size 1 and rank selection with SP close to 1.1 constitute a totally

random selection. This can be seen in figure 2.15 where simulations with these

parameters did not converge correctly, demonstrating the importance of selection

pressure.

CHAPTER 2. GENETIC ALGORITHM 64

Figure 2.15: Selection methods

Chapter 3

French rule interaction

3.1 Background

The following chapter is largely based on a phonological process in French de-

scribed in Dell (1981). French has a rule that deletes word-final liquids if they

are preceded by a non-sonorant obstruent, given in (3.1). The rule is optional,

so for example, the underlying form /tabl/ (‘table’) can surface as both [tab] and

[tabl], and /arbr/ (‘tree’) can surface both as [arbr] and [arb]. Since liquids are

not deleted after sonorants, /yrl/ (‘yell’) can surface as [yrl] but not as *[yr], and

/parl/ (‘speak’) can surface as [parl] but not as *[par].

+liquid

�
! ;/

2

64
+cons

�son

3

75 (optional) (3.1)

This rule on its own poses a non-trivial challenge to the child learner. Since

65

CHAPTER 3. FRENCH RULE INTERACTION 66

the child is presented with only positive examples by an adult who internalized

(3.1), they may equally reach an over-generalizing rule (3.2), that posits deletion

of liquids after any consonant, including sonorants.

+liquid

�
! ;/ (optional) (3.2)

While (3.2) fits the data equally well, French speakers reach the more spe-

cific (3.1), which restricts the deletion environment. If the child learner followed

the SPE evaluation metric, they would not have reached the correct, more re-

strictive rule, because its description is longer: specifying a more restricted en-

vironment requires more symbols. Instead, they would have arrived at (3.2), the

over-generalizing rule, which produces malformed utterances such as *[par]. In

addition, the child learner is not given negative cues ruling out illegal forms such

as *[yr], which would have directed them towards the more restricted environ-

ment.

At the other extreme, a learner using the subset principle as an evaluation met-

ric would face another problem: undergeneralization. If the child is not exposed

to both forms of each word produced by (3.1), the subset principle would direct

the learner towards a grammar that memorizes observed forms instead of gener-

alizing, e.g. storing both [tabl] and [tab] in G instead of collapsing them, since

it produces a language that is a subset of the language produced by 3.1. For ex-

ample, if the learner happens to hear [ivr] (‘drunk’) but never its L-deleted form

[iv], then the language produced by (3.1) would be a superset of the language

CHAPTER 3. FRENCH RULE INTERACTION 67

producible from a memorizing lexicon, and (3.1) will not be chosen.

Rasin et al. (2015) have shown that the MDL-based learner presented in Chap-

ter 1 reaches the correct optional liquid deletion rule, by balancing between the

grammar economy metric (SPE) and the subset principle metric. An MDL learner

is able to induce the correct optional rule since it does not fall into either pitfalls

of these metrics. Under MDL, the SPE metric’s penchant for over-generalization

is met with a cost: (3.2) will have a shorter |G|, but will have to pay it back in

|D:G| for every exception like *[par]. Similarly, the subset principle metric will

yield a shorter |D:G| since it memorizes exceptions in G, but this will cause |G|

to grow significantly.

When tested on a French corpus governed by the rule in (3.1), the MDL learner

in Rasin et al. (2015) reached a grammar that contained the correct lexicon and

deletion rule, by collapsing pairs like [tabl] and [tab] in order to minimize |G|

and restricting the deletion environment in order to minimize |D:G|. However,

due to performance limitations, the learner was not tested on the full phonological

phenomenon described in Dell (1981), given below.

3.1.1 Rule interaction

In addition to the optional L-deletion rule, French has an optional rule that inserts

schwa at the end of a word that ends with two or more consonants, if the next

word begins with a consonant:

; ! @/CC #C (optional) (3.3)

CHAPTER 3. FRENCH RULE INTERACTION 68

For example, parle mal, ‘speaks badly’, can be pronounced either [parlmal]

or [parl@mal]; and film pourri, ‘lousy film’, can be pronounced either [filmpuri]

or [film@puri].

The schwa epenthesis rule (3.3) interacts with the L-deletion rule (3.1), and

their ordering is important: the epenthesis rule precedes the deletion. This creates

a ‘bleeding’ relationship - inserting the schwa destroys the environment where L

could have been deleted, since it is no longer at the end of the word. For example,

the following surface forms are generated when the rules are ordered correctly:

1. rompre mal [rompr(@)mal] ‘break-up badly’

2. couvercle sale [kuverkl(@)sal] ‘dirty lid’

3. arbre puri [arbr(@)puri] ‘rotten tree’

For the same underlying forms, if deletion was applied before epenthesis, both

rules could operate in series and the following ungrammatical surface forms would

be generated:

1. rompre mal *[romp@mal]

2. couvercle sale *[kuverk@sal]

3. arbre puri *[arb@puri]

Note that the rule ordering becomes significant when the first word ends with

three consonants, of which the last one is a liquid. In that case, if the liquid is

deleted by (3.1), the environment would still allow for (3.3).

CHAPTER 3. FRENCH RULE INTERACTION 69

The interaction between the optional L-deletion and schwa-epenthesis rules

poses a non-trivial challenge for the learner. First, as mentioned above, the op-

tional L-deletion rule alone is sufficient to rule out both the SPE grammar econ-

omy metric and the subset principle.

Secondly, with the combination of two optional rules, the learner faces a com-

pound challenge: an opaque rule ordering, where both orderings are consistent

with the observed data. Since the two rules are optional, both orderings (epenthe-

sis before deletion and vice versa) generate the observed surface forms; the differ-

ence between the orderings is in the redundant, ungrammatical surface forms that

are generated by the incorrect ordering, given above. The learner never faces these

forms since it is never met with negative evidence, yet the correct ordering needs

to be learned. A learner following the economy metric will fail to prefer either or-

dering since it has no restriction on the generated surface forms. Once again this

calls for an evaluation metric that balances grammar economy with data restric-

tiveness. Moreover, the economy metric has no mechanism for specifying rule

ordering since it only considers the number of symbols in rules, ignoring their

order. Since in this case both orderings have the same number of symbols, no

ordering will be preferred.

The learner thus needs to not only generalize beyond the data and to conclude

that pairs like [arbr]-[arb] need to be collapsed, but also learn rules through the

opaque surface, learn that they are optional, and that their order is significant.

To the best of our knowledge, no general solution to these challenges has been

provided in the literature, let alone to this specific French process. In the following

CHAPTER 3. FRENCH RULE INTERACTION 70

section we show how a learner using MDL as an evaluation metric is able to reach

the correct rule ordering and lexicon for the French rule interaction.

3.2 Simulation

The corpus for the simulation is based on examples from Dell (1981) and addi-

tional French words. The target lexicon contains 26 stems and 9 suffixes, includ-

ing the null suffix:

Stems tabl, arbr, mordr, parl, film, kuverkl, yrl, klop,
kylt, provok, prut, klad, krab, burk, kurb, kapt,
kupl, odor, amur, karaf, furyr, byl, batir, purpr,
filtr, rompr

Suffixes puri, mal, byvabl, fad, timid, kif, abil, ivr, ;

The data presented to the learner was the output generated by all possible lex-

icon combinations with all possible rule applications. Having two optional rules

in the underlying grammar produces up to 3 surface forms for each stem-suffix

combination in the lexicon (and not 4 since the rules are in a bleeding relation-

ship). This created 479 surface forms in total, a corpus significantly larger than

previously tested (more than twice the largest corpus in Rasin et al., 2018). The

improvement in performance gained by using the genetic algorithm enabled us

to test the learner on this scale for the first time. The full corpus is given in ap-

pendix B.

In order to facilitate the search, an extra non-standard feature

±center

�
was

used to represent schwa, so the search could reach the required feature bundle

CHAPTER 3. FRENCH RULE INTERACTION 71

more easily and not have to mutate until it reached this representation:

2

66666664

�low

�high

�front

�back

3

77777775

.

3.2.1 Results

The simulation was run using the genetic algorithm with 750 islands that had a

population of 200 hypotheses each (total population 150,000). The simulation ran

for 5,000 generations and was stopped after all islands converged on the same

hypothesis and didn’t improve for more than 1,000 generations. We used three

AWS c5.18xlarge machines with 72 vCPUs each (3.0 GHz Intel Xeon), with each

machine running 250 islands.

The final hypothesis is presented in Figure 3.1. First, it can be seen that

the learner induced R1 - an optional schwa epenthesis rule that operates at word

boundary when the next word starts with a consonant. This almost matches the tar-

get epenthesis rule governing the corpus, apart from the left context environment

which should have limited the application to words ending in two consonants. The

missing environment is explained below.

R1 is followed by two deletion rules, R2 and R3. It can be seen that with

R2, the learner has found a different way to express the underlying behavior ”L

is deleted only if schwa was not inserted”: since the left context of R2 is the

correct context for the target R1 (two consonants), and the right context for R2 is

[�voice] and schwa is voiced, R2 can only apply if R1 didn’t. The over-restricted

CHAPTER 3. FRENCH RULE INTERACTION 72

Gfinal =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

RULES: R1 : ; ! @/ #[+cons]R1 : ; ! @/ #[+cons]R1 : ; ! @/ #[+cons]

R2 : [+liquid]! ;/[+cons][+cons] [�voice]R2 : [+liquid]! ;/[+cons][+cons] [�voice]R2 : [+liquid]! ;/[+cons][+cons] [�voice]
R3 : [+strident]! ;/ [+cons][�center][�voice]

LEXICON:

Description length: |Gfinal|+ |D:Gfinal| = 1, 310 + 4, 514 = 5, 824

Figure 3.1: Final grammar for the French simulation. The grammar includes schwa epenthesis and
liquid deletion rules (in bold) and a redundant deletion rule that has no effect on the phonological
mapping.

CHAPTER 3. FRENCH RULE INTERACTION 73

Gfinal0 =

8
>>><

>>>:

RULES: R1 : [+liquid]! ;/[+cons][+cons] [�voice]
R2 : [+strident]! ;/ [+cons][�center][�voice]
R3 : ; ! @/ #[+cons]

LEXICON: same as in Gfinal

Description length: |Gfinal0 |+ |D:Gfinal0 | = 1, 310 + 4,695 = 6, 005

Figure 3.2: Final grammar with same lexicon and reversed rule order. The description length is
worse because of |D:Gfinal0 |

environment of R2 does influence the lexicon though, and leads to suboptimal

segmentation: it can be seen for example that [tabl] and [tab] were not collapsed

in the final lexicon. This increase in lexicon size is offset however by the savings

in data description length, explained below. Apart from such pairs, the lexicon

was segmented correctly.

Although R2 is in practice restricted to the correct target context, R1 is more

general than expected, and the final grammar can generate ungrammatical forms

such as *[amur@puri]. This should have resulted in an encoding length worse than

the target length, due to the |D:G| term, but the final grammar encoding length is

110 bits shorter than the target.

This brings us to the role of R3: this rule does not have any effect on the

phonological mapping - an identical grammar that does not contain it generates

the same surface forms. Even so, removing it from the grammar results in an

increase of 225 bits in encoding length, i.e. the redundant rule compounds with the

suboptimal rules to lower the total encoding length, although it has not practical

effect.

CHAPTER 3. FRENCH RULE INTERACTION 74

This is consistent with a behavior we saw in previous simulations. It seems

that the transducer composition process, used to build the final grammar trans-

ducer, is introducing artifacts that influence the final encoding length, due in part

to the naive encoding scheme we are currently using. We are currently investi-

gating this and believe that using a less naive encoding scheme (e.g. entropy en-

coding) will solve this issue 1. We are also testing a version of the learner which

minimizes the final grammar transducer to its minimal equivalent form, which

seems to eliminate such artifacts. We also believe that enlarging the corpus size

may make the learner less prone to such artifacts, since as the underlying lexicon

grows, fewer accidental gaps are likely to exist in the corpus.

It should be especially noted that although the learner did not finalize the rules

to the correct environments, it did learn the correct ordering of epenthesis before

deletion. To verify that this was not a search mishap, we checked the encoding

length of the same hypothesis that has a reverse rule order (epenthesis after dele-

tions). The description length for this hypothesis is given in 3.2 and is worse by

almost 200 bits. This is because, as expected, the reverse grammar also gener-

ates ungrammatical forms such as *[arbepuri], that add to |D:G|. Similarly to the

single L-deletion corpus, where the |D:G| term encouraged the learner to restrict

the environment, in this corpus the term also helped push the learner towards the

correct rule ordering.

1See Rasin et al. (2018) where similar artifacts were observed and for a discussion of the
influence of the encoding scheme on the final hypothesis

Chapter 4

Discussion

In this work we have improved upon the MDL-based learner from Rasin et al.

(2015) in two respects. First, the simulated annealing optimization method was

replaced by a more powerful genetic algorithm that enabled us for the first time

to test the learner on larger and richer corpora. Up until now, the learner was only

tested on toy datasets with a limited number of words and segments.

Secondly, the improvement in performance enabled us to examine a complex

phonological phenomeon, based on French rule interaction, that compounds sev-

eral learning challenges - optionality and opaque rule ordering. The improved

learner showed promise in learning these in tandem. To our knowledge, this is the

first proposed learner to achieve this task.

There is, however, more work to be done for future research. For example, the

current learner is essentially a batch learner, in that it always parses the complete

corpus as a whole. A modification to make it an online learner, that receives

75

CHAPTER 4. DISCUSSION 76

updates to the corpus as it progresses, can be though of for future work to make

the learner more psychologically plausible. Another modification that may make

the learning process more realistic is to enable the learner to mark certain words

as exceptions or invalid, thus supporting other theories of lexicon representation

and at the same time simulating learning from noisy data.

There is also more work to be done before the learner can face true natu-

ral language corpora. On the technical front, the major setback of the learner is

still its run time, which is highly influenced by the operators used to compose the

grammar. Transducer composition, which is used extensively in the grammar gen-

eration and parsing process, is an expensive operation, that becomes slower as the

corpus size increases. Transducer composition is currently the major bottleneck

in the simulation run time, and it also introduces artifacts to the final grammar as

seen in the previous chapter.

We believe however that these are technical difficulties related to the current

choices of representations and encoding, and that they do not lessen the theoretical

promise that the MDL principle, as a proxy for simplicity, offers as an evaluation

metric.

Appendix A

Mutations list

This appendix describes all possible mutations used to generate a variant of a

hypothesis.

A.1 Mutations on HMM

1. Combine emissions: pick two emissions at random, concatenate them, and

add the result to a random state

2. Clone emission: pick an emission at random and add it to a random inner

state

3. Move emission: pick an emission at random, remove it from its state and

add it to a random inner state

4. Advance emission: pick a random state q1. From q1, pick an emission and

77

APPENDIX A. MUTATIONS LIST 78

an outgoing state q2 at random. Create a new state: q
0. Add the chosen

emission to q
0. Remove the chosen emission from q1. Add the transitions:

q1 to q
0, q0 to q2, and q

0 to q
0.

5. Add state: add an empty state to the HMM (with no emissions or transitions)

6. Remove state: remove a random state, all its emissions and all arcs con-

nected to it

7. Add transition: add a new transition between two random states (chosen

with repetitions)

8. Remove transition: remove a random transition from a random state

9. Add segment to emission: add a random segment from the segment table to

a random emission in a random position

10. Remove segment from emission: remove a random segment from a random

emission

11. Change segment in emission: replace a random segment from a random

emission with a different random segment

12. Add emission to state: add a random segment from the segment table as a

new emission to a random state

13. Remove emission from state: remove a random emission from a random

state

APPENDIX A. MUTATIONS LIST 79

A.2 Mutations on feature bundle list

1. Add feature bundle: create a random feature bundle and insert it in a random

position in the list

2. Remove feature bundle: remove a feature bundle at a random position

3. Change existing feature bundle: create a random feature bundle and mutate

it using one of the mutations on feature bundles:

(a) Add feature: add a random feature with a random value to the feature

bundle

(b) Remove feature: remove a feature at random from the feature bundle

(c) Change feature value: flip the value of a random feature

A.3 Mutations on rule set

1. Add rule: generate a random rule with random feature bundles in each of

the 4 parts of the rule: change, focus, left context, and right context. Add

the rule to the rule set

2. Remove rule: remove a random rule from the rule set

3. Demote rule: pick a random rule. Move it down in the rule order

4. Change rule:

(a) Mutate focus: mutate the focus feature bundle

APPENDIX A. MUTATIONS LIST 80

(b) Mutate change: mutate the change feature bundle

(c) Mutate left context: mutate the left context feature bundle list

(d) Mutate right context: mutate the right context feature bundle list

(e) Mutate obligatoriness: flip the value of the obligatory value (which

determines whether a rule is optional or obligatory)

Appendix B

French simulation data

Corpus data: amur, amurabil, amurbyvab, amurbyvabl, amurfad, amuriv, amurivr, amurkif,

amurmal, amurpuri, amurtimid, amurvivab, amurvivabl, arab, arababil, arabbyvab, arabbyvabl,

arabfad, arabiv, arabivr, arabkif, arabmal, arabpuri, arabtimid, arabvivab, arabvivabl, arb, arbabil,

arbbyvab, arbbyvabl, arbfad, arbiv, arbivr, arbkif, arbmal, arbpuri, arbr, arbrabil, arbrbyvab, arbr-

byvabl, arbrebyvab, arbrebyvabl, arbrefad, arbrekif, arbremal, arbrepuri, arbretimid, arbrevivab,

arbrevivabl, arbrfad, arbriv, arbrivr, arbrkif, arbrmal, arbrpuri, arbrtimid, arbrvivab, arbrvivabl,

arbtimid, arbvivab, arbvivabl, batir, batirabil, batirbyvab, batirbyvabl, batirfad, batiriv, batirivr,

Genetic algorithm hyperparameters

Parameter Value Parameter Value

Island population 200 Migration interval 30
Number of islands 750 Migration ratio 10%
Total population 150,000 Mutation rate 0.8
Selection method Rank Crossover rate 0.2
Total generations 5,000 Rule set crossover Rule pair crossover
Elite size 5% HMM crossover Emissions only

81

APPENDIX B. FRENCH SIMULATION DATA 82

batirkif, batirmal, batirpuri, batirtimid, batirvivab, batirvivabl, burk, burkabil, burkbyvab, burk-

byvabl, burkebyvab, burkebyvabl, burkefad, burkekif, burkemal, burkepuri, burketimid, burke-

vivab, burkevivabl, burkfad, burkiv, burkivr, burkkif, burkmal, burkpuri, burktimid, burkvivab,

burkvivabl, byl, bylabil, bylbyvab, bylbyvabl, bylfad, byliv, bylivr, bylkif, bylmal, bylpuri, byl-

timid, bylvivab, bylvivabl, film, filmabil, filmbyvab, filmbyvabl, filmebyvab, filmebyvabl, filme-

fad, filmekif, filmemal, filmepuri, filmetimid, filmevivab, filmevivabl, filmfad, filmiv, filmivr,

filmkif, filmmal, filmpuri, filmtimid, filmvivab, filmvivabl, filt, filtabil, filtbyvab, filtbyvabl, filt-

fad, filtiv, filtivr, filtkif, filtmal, filtpuri, filtr, filtrabil, filtrbyvab, filtrbyvabl, filtrebyvab, filtrebyv-

abl, filtrefad, filtrekif, filtremal, filtrepuri, filtretimid, filtrevivab, filtrevivabl, filtrfad, filtriv, filtrivr,

filtrkif, filtrmal, filtrpuri, filtrtimid, filtrvivab, filtrvivabl, filttimid, filtvivab, filtvivabl, furyr, furyra-

bil, furyrbyvab, furyrbyvabl, furyrfad, furyriv, furyrivr, furyrkif, furyrmal, furyrpuri, furyrtimid,

furyrvivab, furyrvivabl, kapt, kaptabil, kaptbyvab, kaptbyvabl, kaptebyvab, kaptebyvabl, kapte-

fad, kaptekif, kaptemal, kaptepuri, kaptetimid, kaptevivab, kaptevivabl, kaptfad, kaptiv, kaptivr,

kaptkif, kaptmal, kaptpuri, kapttimid, kaptvivab, kaptvivabl, karaf, karafabil, karafbyvab, karaf-

byvabl, karaffad, karafiv, karafivr, karafkif, karafmal, karafpuri, karaftimid, karafvivab, karafviv-

abl, klad, kladabil, kladbyvab, kladbyvabl, kladfad, kladiv, kladivr, kladkif, kladmal, kladpuri,

kladtimid, kladvivab, kladvivabl, klop, klopabil, klopbyvab, klopbyvabl, klopfad, klopiv, klopivr,

klopkif, klopmal, kloppuri, kloptimid, klopvivab, klopvivabl, krab, krababil, krabbyvab, krab-

byvabl, krabfad, krabiv, krabivr, krabkif, krabmal, krabpuri, krabtimid, krabvivab, krabvivabl,

kup, kupabil, kupbyvab, kupbyvabl, kupfad, kupiv, kupivr, kupkif, kupl, kuplabil, kuplbyvab,

kuplbyvabl, kuplebyvab, kuplebyvabl, kuplefad, kuplekif, kuplemal, kuplepuri, kupletimid, ku-

plevivab, kuplevivabl, kuplfad, kupliv, kuplivr, kuplkif, kuplmal, kuplpuri, kupltimid, kuplvivab,

kuplvivabl, kupmal, kuppuri, kuptimid, kupvivab, kupvivabl, kurb, kurbabil, kurbbyvab, kurbbyv-

APPENDIX B. FRENCH SIMULATION DATA 83

abl, kurbebyvab, kurbebyvabl, kurbefad, kurbekif, kurbemal, kurbepuri, kurbetimid, kurbevivab,

kurbevivabl, kurbfad, kurbiv, kurbivr, kurbkif, kurbmal, kurbpuri, kurbtimid, kurbvivab, kurbviv-

abl, kuverk, kuverkabil, kuverkbyvab, kuverkbyvabl, kuverkfad, kuverkiv, kuverkivr, kuverkkif,

kuverkl, kuverklabil, kuverklbyvab, kuverklbyvabl, kuverklebyvab, kuverklebyvabl, kuverklefad,

kuverklekif, kuverklemal, kuverklepuri, kuverkletimid, kuverklevivab, kuverklevivabl, kuverkl-

fad, kuverkliv, kuverklivr, kuverklkif, kuverklmal, kuverklpuri, kuverkltimid, kuverklvivab, ku-

verklvivabl, kuverkmal, kuverkpuri, kuverktimid, kuverkvivab, kuverkvivabl, kylt, kyltabil, kylt-

byvab, kyltbyvabl, kyltebyvab, kyltebyvabl, kyltefad, kyltekif, kyltemal, kyltepuri, kyltetimid,

kyltevivab, kyltevivabl, kyltfad, kyltiv, kyltivr, kyltkif, kyltmal, kyltpuri, kylttimid, kyltvivab,

kyltvivabl, mord, mordabil, mordbyvab, mordbyvabl, mordfad, mordiv, mordivr, mordkif, mord-

mal, mordpuri, mordr, mordrabil, mordrbyvab, mordrbyvabl, mordrebyvab, mordrebyvabl, mor-

drefad, mordrekif, mordremal, mordrepuri, mordretimid, mordrevivab, mordrevivabl, mordrfad,

mordriv, mordrivr, mordrkif, mordrmal, mordrpuri, mordrtimid, mordrvivab, mordrvivabl, mord-

timid, mordvivab, mordvivabl, odor, odorabil, odorbyvab, odorbyvabl, odorfad, odoriv, odorivr,

odorkif, odormal, odorpuri, odortimid, odorvivab, odorvivabl, parl, parlabil, parlbyvab, parlbyv-

abl, parlebyvab, parlebyvabl, parlefad, parlekif, parlemal, parlepuri, parletimid, parlevivab, par-

levivabl, parlfad, parliv, parlivr, parlkif, parlmal, parlpuri, parltimid, parlvivab, parlvivabl, provok,

provokabil, provokbyvab, provokbyvabl, provokfad, provokiv, provokivr, provokkif, provokmal,

provokpuri, provoktimid, provokvivab, provokvivabl, prut, prutabil, prutbyvab, prutbyvabl, prut-

fad, prutiv, prutivr, prutkif, prutmal, prutpuri, pruttimid, prutvivab, prutvivabl, purp, purpabil,

purpbyvab, purpbyvabl, purpfad, purpiv, purpivr, purpkif, purpmal, purppuri, purpr, purprabil,

purprbyvab, purprbyvabl, purprebyvab, purprebyvabl, purprefad, purprekif, purpremal, purpre-

puri, purpretimid, purprevivab, purprevivabl, purprfad, purpriv, purprivr, purprkif, purprmal, pur-

APPENDIX B. FRENCH SIMULATION DATA 84

prpuri, purprtimid, purprvivab, purprvivabl, purptimid, purpvivab, purpvivabl, romp, rompabil,

rompbyvab, rompbyvabl, rompfad, rompiv, rompivr, rompkif, rompmal, romppuri, rompr, rompra-

bil, romprbyvab, romprbyvabl, romprebyvab, romprebyvabl, romprefad, romprekif, rompremal,

romprepuri, rompretimid, romprevivab, romprevivabl, romprfad, rompriv, romprivr, romprkif,

romprmal, romprpuri, romprtimid, romprvivab, romprvivabl, romptimid, rompvivab, rompvivabl,

tab, tababil, tabbyvab, tabbyvabl, tabfad, tabiv, tabivr, tabkif, tabl, tablabil, tablbyvab, tablbyvabl,

tablebyvab, tablebyvabl, tablefad, tablekif, tablemal, tablepuri, tabletimid, tablevivab, tablevivabl,

tablfad, tabliv, tablivr, tablkif, tablmal, tablpuri, tabltimid, tablvivab, tablvivabl, tabmal, tabpuri,

tabtimid, tabvivab, tabvivabl, yrl, yrlabil, yrlbyvab, yrlbyvabl, yrlebyvab, yrlebyvabl, yrlefad, yr-

lekif, yrlemal, yrlepuri, yrletimid, yrlevivab, yrlevivabl, yrlfad, yrliv, yrlivr, yrlkif, yrlmal, yrlpuri,

yrltimid, yrlvivab, yrlvivab.

Bibliography

Adamidis, Panagiotis. 1994. Review of parallel genetic algorithms bibliography.

Aristotle Univ. Thessaloniki, Thessaloniki, Greece, Tech. Rep .

Azencott, Robert. 1992. Simulated annealing: parallelization techniques, vol-

ume 27, chapter 4,5,6. Wiley-Interscience.

Baker, James Edward. 1985. Adaptive selection methods for genetic algorithms.

In Proceedings of an International Conference on Genetic Algorithms and their

applications, 101–111. Hillsdale, New Jersey.

Bennett III, Forrest H, John R Koza, James Shipman, and Oscar Stiffelman. 1999.

Building a parallel computer system for $18,000 that performs a half peta-flop

per day. In Proceedings of the 1st Annual Conference on Genetic and Evolu-

tionary Computation-Volume 2, 1484–1490. Morgan Kaufmann Publishers Inc.

Berwick, Robert C. 1985. The acquisition of syntactic knowledge. Cambridge,

Massachusetts: MIT Press.

Cantú-Paz, Erick. 1998. A survey of parallel genetic algorithms. Calculateurs

paralleles, reseaux et systems repartis 10:141–171.

Chaitin, Gregory J. 1966. On the length of programs for computing finite binary

85

BIBLIOGRAPHY 86

sequences. Journal of the ACM 13:547–569.

Chater, Nick. 1999. The search for simplicity: A fundamental cognitive principle?

The Quarterly Journal of Experimental Psychology: Section A 52:273–302.

Chater, Nick, and Paul Vitányi. 2007. ‘Ideal learning’ of natural language: Pos-

itive results about learning from positive evidence. Journal of Mathematical

Psychology 51:135–163.

Chau, Chak-Wai, Sam Kwong, CK Diu, and Wolfgang R Fahrner. 1997. Op-

timization of hmm by a genetic algorithm. In Acoustics, Speech, and Signal

Processing, 1997. ICASSP-97., 1997 IEEE International Conference on, vol-

ume 3, 1727–1730. IEEE.

Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, MA: MIT

Press.

Chomsky, Noam, and Morris Halle. 1968. The sound pattern of English. New

York: Harper and Row Publishers.

De Jong, Kenneth Alan. 1975. Analysis of the behavior of a class of genetic

adaptive systems. Doctoral Dissertation.

Dell, François. 1981. On the learnability of optional phonological rules. Linguistic

Inquiry 12:31–37.

Fortin, Félix-Antoine, François-Michel De Rainville, Marc-André Gardner, Marc

Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary algorithms made

easy. Journal of Machine Learning Research 13:2171–2175.

Goldberg, David E. 1989. Genetic algorithms in search, optimization and machine

learning. Addison Wesley.

BIBLIOGRAPHY 87

Goldberg, David E., and Kalyanmoy Deb. 1991. A comparative analysis of selec-

tion schemes used in genetic algorithms. In Foundations of genetic algorithms,

volume 1, 69–93. Elsevier.

Gordon, V Scott, and Darrell Whitley. 1993. Serial and parallel genetic algorithms

as function optimizers. In ICGA, 177–183.

Greening, Daniel R. 1990. Parallel simulated annealing techniques. Physica D:

Nonlinear Phenomena 42:293–306.

Holland, John H. 1975. Adaptation in natural and artificial systems. an intro-

ductory analysis with application to biology, control, and artificial intelligence.

Ann Arbor, MI: University of Michigan Press 439–444.

Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule

systems. Computational Linguistics 20:331–378.

Kirkpatrick, Scott, C. Daniel Gelatt, and Mario P. Vecchi. 1983. Optimization by

simulated annealing. Science 220:671–680.

Kolmogorov, Andrei Nikolaevic. 1965. Three approaches to the quantitative

definition of information. Problems of Information Transmission (Problemy

Peredachi Informatsii) 1:1–7.

Li, Ming, and Paul Vitányi. 2008. An introduction to Kolmogorov complexity and

its applications. Berlin: Springer Verlag, 3rd edition.

Marcus, Gary F. 1993. Negative evidence in language acquisition. Cognition

46:53–85.

Mitchell, Melanie. 1998a. An introduction to genetic algorithms. MIT press.

Mitchell, Melanie. 1998b. An introduction to genetic algorithms, chapter 1.9.

BIBLIOGRAPHY 88

MIT press.

Onbaşoğlu, Esin, and Linet Özdamar. 2001. Parallel simulated annealing algo-

rithms in global optimization. Journal of Global Optimization 19:27–50.

Pearce, David J. 2005. An improved algorithm for finding the strongly connected

components of a directed graph. Victoria Univ., Wellington, NZ, Tech. Rep .

Rasin, Ezer, Iddo Berger, and Roni Katzir. 2015. Learning rule-based morpho-

phonology. http://ling.auf.net/lingbuzz/002800/ .

Rasin, Ezer, Iddo Berger, Nur Lan, and Roni Katzir. 2018. Learning rule-based

morpho-phonology. Ms., MIT and Tel Aviv University.

Rasin, Ezer, and Roni Katzir. 2016. On evaluation metrics in Optimality Theory.

Linguistic Inquiry 47:235–282.

Razali, Noraini Mohd, John Geraghty, et al. 2011. Genetic algorithm performance

with different selection strategies in solving tsp. In Proceedings of the world

congress on engineering, volume 2, 1134–1139. International Association of

Engineers Hong Kong.

Rissanen, Jorma. 1978. Modeling by shortest data description. Automatica

14:465–471.

Solomonoff, Ray J. 1964. A formal theory of inductive inference, parts I and II.

Information and Control 7:1–22, 224–254.

Stanley, Kenneth O, and Risto Miikkulainen. 2002. Evolving neural networks

through augmenting topologies. Evolutionary computation 10:99–127.

Tattersall, Ian. 2012. Masters of the planet: The search for our human origins.

Macmillan.

BIBLIOGRAPHY 89

Wexler, Kenneth, and Rita M. Manzini. 1987. Parameters and learnability in bind-

ing theory. In Parameter setting, ed. Thomas Roeper and Edwin Williams, 41–

76. Dordrecht, The Netherlands: D. Reidel Publishing Company.

Whitley, Darrell, Soraya Rana, and Robert B Heckendorn. 1999. The island model

genetic algorithm: On separability, population size and convergence. Journal

of Computing and Information Technology 7:33–47.

Won, Kyoung-Jae, Thomas Hamelryck, Adam Prügel-Bennett, and Anders

Krogh. 2007. An evolutionary method for learning hmm structure: prediction

of protein secondary structure. BMC bioinformatics 8:357.

Won, Kyoung-Jae, Adam Prügel-Bennett, and Anders Krogh. 2004. Training

hmm structure with genetic algorithm for biological sequence analysis. Bioin-

formatics 20:3613–3619.

Won, Kyoung-Jae, Adam Prugel-Bennett, and Anders Krogh. 2006. Evolving

the structure of hidden markov models. IEEE Transactions on Evolutionary

Computation 10:39–49.

Yada, Tetsushi, Masato Ishikawa, Hidetoshi Tanaka, and Kiyoshi Asai. 1994. Dna

sequence analysis using hidden markov model and genetic algorithm. Genome

Informatics 5:178–179.

Zomaya, Albert Y, and Rick Kazman. 2010. Simulated annealing techniques.

In Algorithms and theory of computation handbook, 33.1–33.18. Chapman &

Hall/CRC.

	MDL Learning
	Introduction
	The MDL criterion

	Learning morpho-phonology
	Hypothesis representation
	Phonological rules
	Lexicon
	Data given the grammar

	Search

	Genetic Algorithm
	Background
	Basic Genetic Algorithm
	Application
	Morphophonology learning
	Population initialization
	Random lexicon
	Random rules

	Mutation
	Crossover
	Lexicon Crossover
	Transition matrix crossover
	Connected components crossover
	Subgraph crossover
	Unilateral emissions crossover

	Rule Crossover
	Rule pair crossover
	Unilateral rule crossover

	Selection
	Rank-based selection
	Tournament selection

	Fitness
	Elitism
	Parallelization
	Naive parallelization
	Island model

	Technical information
	Performance
	Hyperparameters comparison
	Crossover and mutation rates
	Island population size
	Elite size
	Crossover operators
	Selection methods

	French rule interaction
	Background
	Rule interaction

	Simulation
	Results

	Discussion
	Mutations list
	Mutations on HMM
	Mutations on feature bundle list
	Mutations on rule set

	French simulation data

